12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- //
- // CPUFloatToInt8.cpp
- // MNN
- //
- // Created by MNN on 2019/5/22.
- // Copyright © 2018, Alibaba Group Holding Limited
- //
- #include "backend/cpu/CPUFloatToInt8.hpp"
- #include "backend/cpu/CPUBackend.hpp"
- #include "core/Concurrency.h"
- #include "backend/cpu/compute/Int8FunctionsOpt.h"
- #include "core/Macro.h"
- #include "core/TensorUtils.hpp"
- #include "compute/CommonOptFunction.h"
- namespace MNN {
- CPUFloatToInt8::CPUFloatToInt8(Backend* backend, const MNN::Op* param) : Execution(backend) {
- auto scale = param->main_as_QuantizedFloatParam();
- const int scaleLen = scale->tensorScale()->size();
- mClipBits = scale->nbits();
- auto pack = static_cast<CPUBackend*>(backend)->functions()->pack;
- mScales.reset(Tensor::createDevice<float>({UP_DIV(scaleLen, pack) * pack}));
- mValid = backend->onAcquireBuffer(mScales.get(), Backend::STATIC);
- if (!mValid) {
- return;
- }
- if (1 == scaleLen) {
- mSingle = true;
- for (int i = 0; i < pack; ++i) {
- mScales->host<float>()[i] = scale->tensorScale()->data()[0];
- }
- } else {
- memset(mScales->host<float>(), 0, UP_DIV(scaleLen, pack) * pack * sizeof(float));
- memcpy(mScales->host<float>(), scale->tensorScale()->data(), scaleLen * sizeof(float));
- }
- mZeroPoint = scale->zeroPoint();
- mClampMin = scale->clampMin();
- mClampMax = scale->clampMax();
- }
- CPUFloatToInt8::~CPUFloatToInt8() {
- backend()->onReleaseBuffer(mScales.get(), Backend::STATIC);
- }
- ErrorCode CPUFloatToInt8::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
- return NO_ERROR;
- }
- ErrorCode CPUFloatToInt8::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
- const auto input = inputs[0];
- auto output = outputs[0];
- auto pack = static_cast<CPUBackend*>(backend())->functions()->pack;
- auto int8F = static_cast<CPUBackend*>(backend())->int8Functions();
- const auto inputDataPtr = input->host<float>();
- auto outputDataPtr = output->host<int8_t>();
- const auto scaleDataPtr = mScales->host<float>();
- const int channels = input->channel();
- int icDiv4 = UP_DIV(channels, pack);
- const int batch = input->batch();
- const int batchStride = input->stride(0);
- int oc4Stride = 1;
- for (int i = 2; i < input->dimensions(); ++i) {
- oc4Stride *= input->length(i);
- }
- if (mSingle) {
- oc4Stride = icDiv4 * oc4Stride;
- icDiv4 = 1;
- }
- int total = batch * icDiv4;
- auto numberThread = std::min(icDiv4, ((CPUBackend*)backend())->threadNumber());
- MNN_CONCURRENCY_BEGIN(tId, total) {
- int bIndex = tId / icDiv4;
- int z = tId % icDiv4;
- const auto srcChannelPtr = inputDataPtr + tId * oc4Stride * pack;
- const auto scaleChannelPtr = scaleDataPtr + z * pack;
- auto dstChannlePtr = outputDataPtr + tId * oc4Stride * pack;
- int8F->MNNFloat2Int8(srcChannelPtr, dstChannlePtr, oc4Stride, scaleChannelPtr, mClampMin, mClampMax, mZeroPoint);
- }
- MNN_CONCURRENCY_END();
- return NO_ERROR;
- }
- class CPUFloatToInt8Creator : public CPUBackend::Creator {
- public:
- virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
- const MNN::Op* op, Backend* backend) const override {
- return new CPUFloatToInt8(backend, op);
- }
- };
- REGISTER_CPU_OP_CREATOR(CPUFloatToInt8Creator, OpType_FloatToInt8);
- } // namespace MNN
|