CPUFloatToInt8.cpp 3.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697
  1. //
  2. // CPUFloatToInt8.cpp
  3. // MNN
  4. //
  5. // Created by MNN on 2019/5/22.
  6. // Copyright © 2018, Alibaba Group Holding Limited
  7. //
  8. #include "backend/cpu/CPUFloatToInt8.hpp"
  9. #include "backend/cpu/CPUBackend.hpp"
  10. #include "core/Concurrency.h"
  11. #include "backend/cpu/compute/Int8FunctionsOpt.h"
  12. #include "core/Macro.h"
  13. #include "core/TensorUtils.hpp"
  14. #include "compute/CommonOptFunction.h"
  15. namespace MNN {
  16. CPUFloatToInt8::CPUFloatToInt8(Backend* backend, const MNN::Op* param) : Execution(backend) {
  17. auto scale = param->main_as_QuantizedFloatParam();
  18. const int scaleLen = scale->tensorScale()->size();
  19. mClipBits = scale->nbits();
  20. auto pack = static_cast<CPUBackend*>(backend)->functions()->pack;
  21. mScales.reset(Tensor::createDevice<float>({UP_DIV(scaleLen, pack) * pack}));
  22. mValid = backend->onAcquireBuffer(mScales.get(), Backend::STATIC);
  23. if (!mValid) {
  24. return;
  25. }
  26. if (1 == scaleLen) {
  27. mSingle = true;
  28. for (int i = 0; i < pack; ++i) {
  29. mScales->host<float>()[i] = scale->tensorScale()->data()[0];
  30. }
  31. } else {
  32. memset(mScales->host<float>(), 0, UP_DIV(scaleLen, pack) * pack * sizeof(float));
  33. memcpy(mScales->host<float>(), scale->tensorScale()->data(), scaleLen * sizeof(float));
  34. }
  35. mZeroPoint = scale->zeroPoint();
  36. mClampMin = scale->clampMin();
  37. mClampMax = scale->clampMax();
  38. }
  39. CPUFloatToInt8::~CPUFloatToInt8() {
  40. backend()->onReleaseBuffer(mScales.get(), Backend::STATIC);
  41. }
  42. ErrorCode CPUFloatToInt8::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
  43. return NO_ERROR;
  44. }
  45. ErrorCode CPUFloatToInt8::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
  46. const auto input = inputs[0];
  47. auto output = outputs[0];
  48. auto pack = static_cast<CPUBackend*>(backend())->functions()->pack;
  49. auto int8F = static_cast<CPUBackend*>(backend())->int8Functions();
  50. const auto inputDataPtr = input->host<float>();
  51. auto outputDataPtr = output->host<int8_t>();
  52. const auto scaleDataPtr = mScales->host<float>();
  53. const int channels = input->channel();
  54. int icDiv4 = UP_DIV(channels, pack);
  55. const int batch = input->batch();
  56. const int batchStride = input->stride(0);
  57. int oc4Stride = 1;
  58. for (int i = 2; i < input->dimensions(); ++i) {
  59. oc4Stride *= input->length(i);
  60. }
  61. if (mSingle) {
  62. oc4Stride = icDiv4 * oc4Stride;
  63. icDiv4 = 1;
  64. }
  65. int total = batch * icDiv4;
  66. auto numberThread = std::min(icDiv4, ((CPUBackend*)backend())->threadNumber());
  67. MNN_CONCURRENCY_BEGIN(tId, total) {
  68. int bIndex = tId / icDiv4;
  69. int z = tId % icDiv4;
  70. const auto srcChannelPtr = inputDataPtr + tId * oc4Stride * pack;
  71. const auto scaleChannelPtr = scaleDataPtr + z * pack;
  72. auto dstChannlePtr = outputDataPtr + tId * oc4Stride * pack;
  73. int8F->MNNFloat2Int8(srcChannelPtr, dstChannlePtr, oc4Stride, scaleChannelPtr, mClampMin, mClampMax, mZeroPoint);
  74. }
  75. MNN_CONCURRENCY_END();
  76. return NO_ERROR;
  77. }
  78. class CPUFloatToInt8Creator : public CPUBackend::Creator {
  79. public:
  80. virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
  81. const MNN::Op* op, Backend* backend) const override {
  82. return new CPUFloatToInt8(backend, op);
  83. }
  84. };
  85. REGISTER_CPU_OP_CREATOR(CPUFloatToInt8Creator, OpType_FloatToInt8);
  86. } // namespace MNN