123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207 |
- //
- // DepthwiseConvExecution.cpp
- // MNN
- //
- // Created by MNN on 2019/02/28.
- // Copyright © 2018, Alibaba Group Holding Limited
- //
- #include "backend/opencl/execution/image/DepthwiseConvExecution.hpp"
- #include "backend/opencl/execution/image/MultiInputDWConvExecution.hpp"
- #include "core/Macro.h"
- #include <string.h>
- #include "core/TensorUtils.hpp"
- #include "backend/opencl/core/OpenCLRunningUtils.hpp"
- #include "core/ConvolutionCommon.hpp"
- namespace MNN {
- namespace OpenCL {
- DepthwiseConvExecution::DepthwiseConvExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
- : ConvCommonExecution(op->main_as_Convolution2D(), backend) {
- mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
- mCon2dParams = op->main_as_Convolution2D();
- mConv2dCommonParams = mCon2dParams->common();
- mStrides = {mConv2dCommonParams->strideY(), mConv2dCommonParams->strideX()};
- mDilations = {mConv2dCommonParams->dilateY(), mConv2dCommonParams->dilateX()};
- int kernelWidth = mConv2dCommonParams->kernelX();
- int kernelHeight = mConv2dCommonParams->kernelY();
- int outputChannel = mConv2dCommonParams->outputCount();
- std::vector<int> filterShape{1, outputChannel, kernelHeight, kernelWidth};
- std::vector<int> filterImageShape{(int)kernelHeight * kernelWidth, (int)UP_DIV(outputChannel, 4)};
-
- const float* filterDataPtr = nullptr;
- int filterDataSize = 0;
- std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
- ConvolutionCommon::getConvParameters(&quanCommon, backend, mCon2dParams, &filterDataPtr, &filterDataSize);
- mFilter.reset(Tensor::createDevice<float>({1, filterImageShape[1], 1, 4 * filterImageShape[0]}));
- std::shared_ptr<Tensor> filterBuffer(Tensor::createDevice<float>(filterShape));
-
- int buffer_size = filterBuffer->elementSize();
- if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()) {
- buffer_size *= sizeof(half_float::half);
- } else {
- buffer_size *= sizeof(float);
- }
- cl::Buffer filterBufferCL(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, buffer_size);
- filterBuffer->buffer().device = (uint64_t)(&filterBufferCL);
- cl_int error;
- auto ptrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(filterBufferCL, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
- if(ptrCL != nullptr && error == CL_SUCCESS){
- if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()){
- for (int i = 0; i < filterBuffer->elementSize(); i++) {
- ((half_float::half *)ptrCL)[i] = (half_float::half)(filterDataPtr[i]);
- }
- } else {
- ::memcpy(ptrCL, filterDataPtr, filterBuffer->size());
- }
- }else{
- MNN_ERROR("Map error ptrCL == nullptr \n");
- }
- mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(filterBufferCL, ptrCL);
- mOpenCLBackend->onAcquireBuffer(mFilter.get(), Backend::STATIC);
- MNN::OpenCL::ImageBufferConvertor imageBufferConvertor{mOpenCLBackend->getOpenCLRuntime()};
- std::string buildOption = "";
- if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf() == false){
- buildOption = "-DBUFFER_INP_FP32";
- }
- imageBufferConvertor.convertBufferToImage(filterBuffer.get(), MNN::OpenCL::DW_CONV2D_FILTER, mFilter.get(), false, buildOption);
- auto runtime = mOpenCLBackend->getOpenCLRuntime();
- std::set<std::string> buildOptions;
- std::string kernelName = "depthwise_conv2d";
- if (mConv2dCommonParams->strideX() == 1 && mConv2dCommonParams->strideY() == 1 &&
- mConv2dCommonParams->dilateX() == 1 && mConv2dCommonParams->dilateY() == 1) {
- kernelName = "depthwise_conv2d_s1";
- }
- if (mConv2dCommonParams->relu() == true) {
- buildOptions.emplace("-DRELU");
- } else if (mConv2dCommonParams->relu6() == true) {
- buildOptions.emplace("-DRELU6");
- }
- mKernel = runtime->buildKernel("depthwise_conv2d", kernelName, buildOptions);
- mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
- }
- DepthwiseConvExecution::~DepthwiseConvExecution() {
- mOpenCLBackend->onReleaseBuffer(mFilter.get(), Backend::STATIC);
- }
- ErrorCode DepthwiseConvExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
- startRecord(mOpenCLBackend->getOpenCLRuntime(), mRecording);
- auto input = inputs[0];
- auto output = outputs[0];
- std::vector<int> inputShape = tensorShapeFormat(input);
- std::vector<int> outputShape = tensorShapeFormat(output);
- mGlobalWorkSize = {static_cast<uint32_t>(UP_DIV(outputShape.at(3), 4) * UP_DIV(outputShape.at(2), 4)),
- static_cast<uint32_t>(outputShape.at(0) * outputShape.at(1))};
- auto padding = ConvolutionCommon::convolutionPad(input, output, mConv2dCommonParams);
- mPaddings[0] = padding.second;//padY
- mPaddings[1] = padding.first;//padX
- const int outputHeight = outputShape.at(1);
- const int outputWidth = outputShape.at(2);
- const int inputHeight = inputShape.at(1);
- const int inputWidth = inputShape.at(2);
- const int inputChannels = inputShape.at(3);
- const int inputChannelBlocks = UP_DIV(inputChannels, 4);
- const int filterHeight = mCon2dParams->common()->kernelY();
- const int filterWidth = mCon2dParams->common()->kernelX();
- uint32_t idx = 0;
- auto kernel = &mKernel;
- int inputImageShape[2] = {inputHeight, inputWidth};
- int outputImageShape[2] = {outputHeight, outputWidth};
- int strideShape[2] = {mStrides[0], mStrides[1]};
- int paddingShape[2] = {mPaddings[0], mPaddings[1]};
- int kernelShape[2] = {filterHeight, filterWidth};
- int dilationShape[2] = {mDilations[0], mDilations[1]};
- std::string kernelName = "depthwise_conv2d_s1";
- kernel->setArg(idx++, mGlobalWorkSize[0]);
- kernel->setArg(idx++, mGlobalWorkSize[1]);
- kernel->setArg(idx++, openCLImage(input));
- kernel->setArg(idx++, openCLImage(mFilter.get()));
- kernel->setArg(idx++, openCLImage(mBias.get()));
- kernel->setArg(idx++, openCLImage(output));
- kernel->setArg(idx++, sizeof(inputImageShape), inputImageShape);
- kernel->setArg(idx++, static_cast<int>(inputChannelBlocks));
- kernel->setArg(idx++, sizeof(outputImageShape), outputImageShape);
- kernel->setArg(idx++, sizeof(kernelShape), kernelShape);
- kernel->setArg(idx++, sizeof(paddingShape), paddingShape);
- if (mStrides[0] != 1 || mStrides[1] != 1 || mDilations[0] != 1 || mDilations[1] != 1) {
- kernel->setArg(idx++, sizeof(dilationShape), dilationShape);
- kernel->setArg(idx++, sizeof(strideShape), strideShape);
- kernelName = "depthwise_conv2d";
- }
-
- mLocalWorkSize = localWS2DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelName, mKernel).first;
- recordKernel2d(mKernel, mGlobalWorkSize, mLocalWorkSize, mOpenCLBackend->getOpenCLRuntime());
- endRecord(mOpenCLBackend->getOpenCLRuntime(), mRecording);
- return NO_ERROR;
- }
- ErrorCode DepthwiseConvExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
- #ifdef LOG_VERBOSE
- MNN_PRINT("start DepthwiseConvExecution onExecute !\n");
- #endif
- #ifdef ENABLE_OPENCL_TIME_PROFILER
- cl::Event event;
- runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize,
- mOpenCLBackend->getOpenCLRuntime(),
- &event);
-
- mOpenCLBackend->getOpenCLRuntime()->pushEvent({"DepthwiseConv", event});
- #else
- if(mOpenCLBackend->getOpenCLRuntime()->isUseRecordQueue()){
- if(mOpenCLBackend->getOpenCLRuntime()->isDevideOpRecord())
- mOpenCLBackend->getOpenCLRuntime()->getRecordings()->emplace_back(mRecording);
- #ifdef LOG_VERBOSE
- MNN_PRINT("End DepthwiseConvExecution onExecute... \n");
- #endif
- return NO_ERROR;
- }
- runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize,
- mOpenCLBackend->getOpenCLRuntime());
- #endif
- #ifdef LOG_VERBOSE
- MNN_PRINT("end DepthwiseConvExecution onExecute !\n");
- #endif
- return NO_ERROR;
- }
- class DepthwiseConvolutionCreator : public OpenCLBackend::Creator {
- public:
- virtual ~DepthwiseConvolutionCreator() = default;
- virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
- const MNN::Op *op, Backend *backend) const override {
-
- MNN_ASSERT(inputs.size() <= 3);
- if (inputs.size() == 2 || inputs.size() == 3) {
- return new MultiInputDWConvExecution(op, backend);
- }
-
- MNN_ASSERT(inputs.size() == 1);
- return new DepthwiseConvExecution(inputs, op, backend);
- }
- };
- OpenCLCreatorRegister<DepthwiseConvolutionCreator> __DepthwiseConv_op(OpType_ConvolutionDepthwise, IMAGE);
- } // namespace OpenCL
- } // namespace MNN
|